Twisted Tensor Products Related to the Cohomology of the Classifying Spaces of Loop Groups

Twisted Tensor Products Related to the Cohomology of the Classifying Spaces of Loop Groups

About this Book

Let $G$ be a compact, simply connected, simple Lie group. By applying the notion of a twisted tensor product in the senses of Brown as well as of Hess, we construct an economical injective resolution to compute, as an algebra, the cotorsion product which is the $E_2$-term of the cobar type Eilenberg-Moore spectral sequence converging to the cohomology of classifying space of the loop group $LG$. As an application, the cohomology $H^*(BLSpin(10); \mathbb{Z}/2)$ is explicitly determined as an $H^*(BSpin(10); \mathbb{Z}/2)$-module by using effectively the cobar type spectral sequence and the Hochschild spectral sequence, and further, by analyzing the TV-model for $BSpin(10)$.

Similar Books:

eBookmela
Logo